Channel

Science and the Stradivarius

Stradivarius violins are among the most sought-after musical instruments in the world. But is there a secret that makes a Stradivarius sound so good, and can modern violins match the wonderful tonal quality of this great Italian instrument?

Is there really a lost secret that sets Stradivarius violins apart from the best instruments made today? After more than a hundred years of vigorous debate, this question remains highly contentious, provoking strongly held but divergent views among players, violin makers and scientists alike. All of the greatest violinists of modern times certainly believe it to be true, and invariably perform on violins by Stradivari or Guarneri in preference to modern instruments.

Violins by the great Italian makers are, of course, beautiful works of art in their own right, and are coveted by collectors as well as players. Particularly outstanding violins have reputedly changed hands for over a million pounds. In contrast, fine modern instruments typically cost about £10 000, while factory-made violins for beginners can be bought for under £100. Do such prices really reflect such large differences in quality?

The violin is the most highly developed and most sophisticated of all stringed instruments. It emerged in Northern Italy in about 1550, in a form that has remained essentially unchanged ever since. The famous Cremonese violin-making families of Amati, Stradivari and Guarneri formed a continuous line of succession that flourished from about 1600 to 1750, with skills being handed down from father to son and from master to apprentice. The popular belief is that their unsurpassed skills, together with the magical Stradivarius secret, were lost by the start of the 19th century.

Every violin, whether a Stradivarius or the cheapest factory-made copy, has a distinctive "voice" of its own. Just as any musician can immediately recognize the difference between Domingo and Pavarotti singing the same operatic aria, so a skilled violinist can distinguish between different qualities in the sound produced by individual Stradivari or Guarneri violins. The challenge for scientists is to characterize such differences by physical measurements. Indeed, over the last century and a half, many famous physicists have been intrigued by the workings of the violin, with Helmholtz, Savart and Raman all making vital contributions.

It is important to recognize that the sound of the great Italian instruments we hear today is very different from the sound they would have made in Stradivari's time. Almost all Cremonese instruments underwent extensive restoration and "improvement" in the 19th century. You need only listen to "authentic" baroque groups, in which most top performers play on fine Italian instruments restored to their former state, to recognize the vast difference in tone quality between these restored originals and "modern" versions of the Cremonese violins.

Prominent among the 19th-century violin restorers was the French maker Vuillaume, whose copy of a Guarnerius violin is shown in figure 1a. Vuillaume worked closely with Felix Savart, best known to physicists for the Biot-Savart law in electromagnetism, to enhance the tone of early instruments. Vuillaume, Savart and others wanted to produce more powerful and brilliant sounding instruments that could stand out in the larger orchestras and concert halls of the day. Improvements in instrument design were also introduced to support the technical demands of great violin virtuosi like Paganini.